Image Translation with OpenCV
This section explains how to translate (shift) an image using OpenCV with an affine transformation.
Image translation is commonly used for: - Data augmentation - Alignment correction - Preprocessing for vision algorithms
1. Implementation Principle
OpenCV uses the cv2.warpAffine() function to perform affine
transformations, including:
- Translation
- Rotation
- Scaling
- Shearing
For translation, a 2×3 transformation matrix is defined as:
[ 1 0 tx ]
[ 0 1 ty ]
Where: - tx is the horizontal shift - ty is the vertical shift
2. Implementation Effect
Navigate to the OpenCV working directory:
cd ~/opencv
Run the image translation script:
python3 06.image_translate.py
note
Select the image window and press q to exit the program.

3. Implementation Code
import cv2
import numpy as np
def translate_image(input_path, output_path, tx, ty):
image = cv2.imread(input_path)
if image is None:
print("Error: Unable to open image file.")
return
# Affine transformation matrix
M = np.float32([
[1, 0, tx],
[0, 1, ty]
])
translated_image = cv2.warpAffine(
image,
M,
(image.shape[1], image.shape[0])
)
if cv2.imwrite(output_path, translated_image):
print(f"Image saved to {output_path}")
cv2.imshow('Image Preview', cv2.imread(output_path))
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
print("Error: Unable to save image file.")
translate_image(
'/home/jetson/opencv/images/hemihex_logo.png',
'/home/jetson/opencv/images/hemihex_logo_translate.png',
50,
50
)
4. Code Explanation
cv2.imread()loads the image into memory\np.float32()defines the affine transformation matrix\cv2.warpAffine()applies the translation\cv2.imwrite()saves the translated image\- Display functions preview the result
Summary
- Image translation shifts an image in X and Y directions
- Implemented using affine transformation
- Useful for augmentation and preprocessing
- Requires explicit transformation matrix
Maintained by HemiHex for OpenCV-based image processing workflows.